Rate dependent finite strain constitutive modeling of polyurethane and polyurethane–clay nanocomposites
نویسندگان
چکیده
منابع مشابه
Rate dependent finite strain constitutive modeling of polyurethane and polyurethane–clay nanocomposites
A finite strain nonlinear viscoplastic constitutive model for polyurethane (PU)–Montmorillonite clay (MTM) nanocomposites is developed with the goal of characterizing the mechanical response under different strain rates and strain amplitudes. In this model, both the elastic and viscous responses are considered to be nonlinear. It is shown that a simple mathematical extension of the model used t...
متن کاملRate dependent finite strain constitutive model of polyurea
Article history: Received 7 October 2009 Received in final revised form 7 October 2010 Available online 16 October 2010
متن کاملFinite Element Modeling of Strain Rate and Grain Size Dependency in Nanocrystalline Materials
Nanocrystalline materials show a higher strain-rate sensitivity in contrast to the conventional coarse-grained materials and a different grain size dependency. To explain these phenomenon, a finite element model is constructed that considers both grain interior and grain boundary deformation of nanocrystalline materials. The model consist of several crystalline cores with different orientations...
متن کاملEffect of soft segment and clay volume fraction on rate dependent damping of polyurethane and polyurethane-clay nanocomposites
Amorphous polymers have been extensively used for energy dissipative applications due to their relatively low density and controllable rate dependent damping. In general, molecular mobility depends on the rate of applied loading and the ambient temperature, and results in a wide variety of mechanical properties. The variation in the macromolecular chain dynamics can be obtained by altering the ...
متن کاملModeling of Compression Curves of Flexible Polyurethane Foam with Variable Density, Chemical Formulations and Strain Rates
Flexible Polyurethane (PU) foam samples with different densities and chemical formulations were tested in quasi-static stress-strain compression tests. The compression tests were performed using the Lloyd LR5K Plus instrument at fixed compression strain rate of 0.033 s-1 and samples were compressed up to 70% compression strains. All foam samples were tested in the foam rise direction and their ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Solids and Structures
سال: 2015
ISSN: 0020-7683
DOI: 10.1016/j.ijsolstr.2014.10.027